HS-543 induces apoptosis of Imatinib-resistant chronic myelogenous leukemia with T315I mutation

نویسندگان

  • Soo Jung Kim
  • Kyung Hee Jung
  • Hong Hua Yan
  • Mi Kwon Son
  • Zhenghuan Fang
  • Ye-Lim Ryu
  • Hyunseung Lee
  • Joo Han Lim
  • Jun-Kyu Suh
  • JinHee Kim
  • Soyoung Lee
  • Sungwoo Hong
  • Soon-Sun Hong
چکیده

Chronic myeloid leukemia (CML) is characterized by a constitutive activation of Bcr-Abl tyrosine kinase. Bcr-Abl/T315I is the predominant mutation that causes resistance to Imatinib. In the present study, we synthesized a novel Bcr-Abl inhibitor, HS-543, and investigated its effect on cell survival or apoptosis in CML cells bearing Bcr-Abl/T315I (BaF3/T315I) or wild-type Bcr-Abl (BaF3/WT). HS-543 showed anti-proliferative effects in the BaF3/WT cells as well as the BaF3/T315I cells with resistance to Imatinib and strongly inhibited the Bcr-Abl signaling pathway in a dose-dependent manner. Furthermore, it significantly increased the sub G1 phase associated with early apoptosis, with increased levels of cleaved PARP and cleaved caspase-3, as well as the TUNEL-positive apoptotic cells. In addition, we found that HS-543 induced apoptosis with the loss of mitochondrial membrane potential by decreasing the expression of Mcl-1 and survivin, together with increasing that of Bax. In BaF3/T315I xenograft models, HS-543 significantly delayed tumor growth, unlike Imatinib. Our results demonstrate that HS-543 exhibits the induction of apoptosis and anti-proliferative effect by blocking the Bcr-Abl signaling pathway in the T315I-mutated Bcr-Abl cells with resistance to Imatinib. We suggest that HS-543 may be a novel promising agent to target Bcr-Abl and overcome Imatinib resistance in CML patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-rheumatic agent auranofin induced apoptosis in chronic myeloid leukemia cells resistant to imatinib through both Bcr/Abl-dependent and -independent mechanisms

Resistance to Imatinib mesylate (IM) is an emerging problem for patients with chronic myelogenous leukemia (CML). T315I mutation in the Bcr-Abl is the predominant mechanism of the acquired resistance to IM and second generation tyrosine kinase inhibitors (TKI). Therefore it is urgent to search for new measures to overcome TKI-resistance. Auranofin (AF), clinically used to treat rheumatic arthri...

متن کامل

Platinum pyrithione induces apoptosis in chronic myeloid leukemia cells resistant to imatinib via DUB inhibition-dependent caspase activation and Bcr-Abl downregulation

Chronic myelogenous leukemia (CML) is characterized by the chimeric tyrosine kinase Bcr-Abl. T315I Bcr-Abl is the most notorious point mutation to elicit acquired resistance to imatinib (IM), leading to poor prognosis. Therefore, it is urgent to search for additional approaches and targeting strategies to overcome IM resistance. We recently reported that platinum pyrithione (PtPT) potently inhi...

متن کامل

The BCR-ABLT315I mutation compromises survival in chronic phase chronic myelogenous leukemia patients resistant to tyrosine kinase inhibitors, in a matched pair analysis.

The BCR-ABL T315I mutation confers resistance to currently licensed tyrosine kinase inhibitors in chronic myelogenous leukemia. However, the impact of this mutation on survival in early stages of disease, in chronic phase, has never been detailed. Using matched pair analysis, a cohort of 64 patients with chronic phase chronic myelogenous leukemia harboring a T315I mutation and resistant to imat...

متن کامل

HS-438, a new inhibitor of imatinib-resistant BCR-ABL T315I mutation in chronic myeloid leukemia.

Imatinib is a selective breakpoint cluster region-Abelson (BCR-ABL) tyrosine kinase inhibitor (TKI) that has significantly improved the prognosis of patients with chronic myeloid leukemia (CML). However, T315I gene mutations of the BCR-ABL kinase domain have been shown to confer resistance to imatinib. In the present study, we synthesized a novel BCR-ABL inhibitor, HS-438, and identified its an...

متن کامل

Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway.

Although the BCR/ABL tyrosine kinase inhibitor imatinib is highly effective for treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia, relapse with emerging imatinib resistance mutations in the BCR/ABL kinase domain poses a significant problem. Here, we show that the multikinase inhibitor sorafenib inhibits proliferation and induces ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015